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ABSTRACT tance of a priori knowledge of the plant deseripo pWame-
ten, pr "structured uncerinty." The role of the model choice

A general framework is developed for the analysis of perfor- in determining performance and robustness is also exposed.
manc and robustness properties of tuned adaptive control Structured singular value analysis proves to be a useful
systems. The analysis is specialized to the case of Model tool in studying these questions. Originally developed for
Reference Adaptive Control. It is shown that certain combi- multivariable control performance and robustness analysis in
nations of performance objectives and a priori uncertainty the presence of multiple pertubaions [2] , the structured
lead to unsolvable MRAC design problems, while other corn- Singular value allows one to probe the performance of a
binations lead to problems which can be solved only by care- tuned adaptive system with perturbations included which
ful choice of the reference model. represent a priori structured uncertainty as well as post-

adaptation residual or unstructured uncertainty. The utility of
1. INTRODUCTION this tool is illustrated through specific examples.

Much attention has ben paid to the questions of stabil- Our analyses show that certain levels of satuctuud and
ity and parameter convergence of Model Reference Adaptive unstructured uncertainty preclude successful solution of the
Controllers (MRAC's). Under certain idealized ssumptios, design problem via MERAC methods. For these levels, perfor-
powerful results in these aeas- have been obtained. More ance and robustness goals cannot be ganmteed under a
recently, considerable effort has been devoted to these same model matching design rule regardless of the choice of refer-
two questions nd weakened assumptions, including the once model Alternatively, other levels of uncertinty lead to
assumption of neglected or "unstructured" plant dynamics and tractable problems, with performance and robustness goals
disturbances. Research in this area, unde the banner of achievable through careful choice of the model These
"robust adaptive control," is extensive, results are established both theoretically and through exam-

In spite of this activity, certain other issues of model pL.
reference adaptive control have bee neglected. Even ignor- The paper is organized as follows. In section II, we
ing the difficulty of achieving a robust adaptation process, the develop a fornal evaluation framework for a general class of
Model Reference approach has certain inherent structural tim- design rules. In section I, an MRAC saucture is given, and
itations. That is, the "tuned system" to which MRACs con- certain m ipulations are performed to facilitate its analysis.
verge unde a model matching design rule may not have an Section IV provides several theoetical results revealing the
acceptable level of stability robustness or an acceptable sensi- importance of of a priori information in determining achiev-
tivity function. able levels of nominal perfomance and robust stability in

This paper is devoted to the study of the "design ru" tuned MRAC systems. Section IV addresses these questions
which calculates controller parameters from (sometimes as well as the more advanced question of performance-
implicit) plant parametes A generl evaluation h i robustness through the use of structured Singular value
formulated, and is applied to the explicit evaluation of a analysis. Examples are given showing both an unsolvable
model reference design rule. The specific desig nle studied design problem, and a design problem which is solvable
corresponds exactly to the Narend-Lin-Valavani controller through careful choice of the refernme model.
in reference [3]for plants with (nominal) relative degree equal
to one. ORMAL DEFINMON OF EVALUATION CRERIA

The paper does not deal with questions of robust A. Partitining of Uncertainty
identification. Rather, we assume that adaptation is complete,
that a plant description has been obtained wh is accur The true system P will be assumed to have both su'ic-
to within a certain tolerance, and that the design rule has tired and unstructured unce:rtainty. A simple parameterized
been applied to consruct the controller. Under these description of the plant will be assumed In adaptive control,
assumption, we examine the questions of robust 4tability, an on-line identification Process dcrmine the parameters of
nominal performance, and the more advanced question of the desciption, either explicitly or implicitly. The a priori
robust performance. In addition, we illurinat the impor- uncertaty in the paramte values will be called structured

uncertainty. It is recognized that regardless of the choice ofRX63s4m6-C-013. the parameters, the plant description will not completely des-
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cibe the plant dynamics. The residual enr will be called B. Design Rule
unstructure uncertainty. The control design rule is the law governing the choice

The relative amounts of stru and unstuctured of the feedback compensator given the parameters of the
unacraWinty depend not only upon a priori knowledge of the plant description. The feedback compensator may be
system, but also upon the system excitation and the perfor- described by an operator K:
mance of the identification mechanism. These issues are
quite complex and problem-dependent, and will not be up - K
treated here. Instead, we take as a starting point an a priori
set description of the possible levels of structured and where up is the plant input, yp is the output, and r is and
unstructured uncertainty, without regard for its origin, and we external command input. K is determined by a design rule
study the consequences of various control design rules under f:
the given levels of uncertainty. That is, we will assume

p pK - fz(c,l
w P (C)e Iwhere c is the vector of plant paramneters, and I is a vector of

whee P )es designer-selectable parameters (for example, the "mode "

and PuFu choice in a model reference scheme). Since the goal is to
characterize the post-adaptation or "tuned" system, K may besand P$ and ]/are known sets dcribing the possible struc- thought of as a two-input, one-output linear time-invariant

tured plant descriptions PS and the residual unstructured plant trafer function.
dynamics Pu, respectively. Note that the dependence of the We will describe an analysis of various design rules
plant description on a parameter vector c under the uncertainty partitioning shown above. We well also
explicit, analyze an MRAC design rule explicitly.

A variety of uncertainty set characterizations may be
chosen. We shall assume a cone of unstructured uncertainty C. Control Design Quality Measures
given by We will adopt two important and popular indicas of
Pu - (1 + EU(s): P and Ps have same number of poles in V control system quality, namely the sensitivity and comple-

JEu(iw)j <'u~i) Y to, menuy senitivity functions. Classically, thde functions art
examined in the frequency domain. We will examine them

Eu(jw) is known a priori } more formally in the weighted H. seminorm suggested in

This choice is popular in non-adaptive robustness analysis. (5], which is a currently well-accepted approach.

For the case of structured uncertainty, we will study For the system of Figure 1, tie sensitivity, denoted
multiple characterization options. All ar based on the su- S(,lds), is the transfer function from ul to e, unde the design

iem PS(c) - kpNgsYDp(s) where Np and Dp ae coprime nle K - f(c4), assuming EU(s)- 0. The sensitivity of a
monic polynomials of known degree m and n respectively, feedback loop is a measure of how its command tracking per-
with Np Hurwitz. kp is a gain of known sign. T7e param- formance changes under perturbations of the mathematical
ter vector c represents the value of kp and the coefficients of description. Small sensitivity means that the effect of exter-
Np and Dp. Global uncertainty will be taken to mean no nal disturbances and small plant perturbations on the com-N~ an D, loba asnenairi wll b takn tomean n am tracking accuracy is smll and that minor errors in the
further a priori knowledge of c. We will also study the case antckin acura i small and ow minor e d ioop
in which additional a priori knowledge exists in the form of plant description also have a small effect on the closed loop

a estimate of Dp, denoted Dp0, and a known set of possible respons to commands.

deviations {ES(Cj)) where ES is defined implicitly by We define desired sensitivity properties under a design
rule as follows.

Dp(s) - Do(s)(l + Es(s)) (1)

Since Es represents polynomial uncertainty rather than E
rational transfer function uncertainty, a conic representation S
of (Es(JM)) is not natural. Instead we will study two
representations - one which contains the set (E5(jcc)), and a
second smaller reprsetation which is contained entirely ES
within ( jscm)). That is, we shall study the two cones

{E3 (jco) : 1E5{jcc :9 '&jw)) c (E5 (jco) (2)
fE5(jm) : Es(io($I Es(Jco)1 V c. {Eos(j)} (3)

whe & and E are nonneSative and known a priori. An
example of the set (EsJco)) and the two cones are illustrated
in Figure 0. The amorphous depiction of (Es.j )} illustrates Figure 0
that within the above framework lie many characterizations Conic Cover and Conic Subset of
of a priori knowledge of Dp. Structured Uncertainty



DdnltIoU 1: For a given choice of the parameter vector , a The proof follows directly fom the definitions, and a com-
design rui fk IS desenitizing if an onif' pletely analogous lemma holds for -Potentially desensitizing."

(1 .P 54F lp 1(cjljn)I4UWc)) ) .Note that the above definitions apply to adaptive and
nonl-adaptive systems alike, Provided that the adaptive con-

where LM) is a chosen insentvity Spec, ie., the inverse troller converges to an LTI controller K(s). Such conver-
of th maiu toeabesnstty. geceC is assumed to bold thrughout the paper. To acheve

Defniton : Fr agivn r, te dsiprul fconvergenc is, of course, a major difficulty in itsel.
Defniton2: ora gve ~ hedesgn rul (c,) is pawen. III. ANALYSIS OF AN MRAC SrMUCTRr E

dally deswnsizinS if. given F3S there exists a parameter vec-
tor I such that the design rule is dsensitizing. A. The Structure

Note that for a particular fixed value of c and 1, the A model reference adaptive control stuicbti is showni in
defintition of "desenditzing" Is the usual smal sensitivity Fiur 2. In the figure, Np. Op are coprime monic plant
requirement as measured by the H. samnorm. We have polynomials of degree m and n respectively, with Np.
generalized this requirement to allow for a set of plant Hurwitz. kp is a gain. EU represent the unstructured
descriptions, and a design rule as opposed to a single padm dynamics, as desribed earlier. AI(s) is a designer-chosen
Jar design. strictly-stable manic polynomial of degree n-rn-i. The last

Simiarl, oe cn sricaAMa sa cmplmenery coefficient of A, is chosen to be I so that Aj(jW) = 1 over
seiilay, oqin can Cemiea omplementary tiiy frme sOf entML Th reference model is k4dD

densiotd re104, en Tshe seuctfomlmntar v, senFit-t whemt Nu. and D. are monic Hurwitz polynomials of degree
dewed , L s the rnse fucto frand ov1 i ig n respectively. 0, and 0. are vectous of adjustable

ore1, nde th deig rule K.. fX(cJ. It is an iioat prmtr fdmnina n epciey
measure of stability robustness. Small complementary sensi- Pamersodininmadnrspcvly
tivity mean that stability can be guaranteed even when erosRemark: This Structure is the same as that of Narendra.,
in the plant description are quite larg. Lin, and Valavanm [3] except that the dimension of 0, has

We defin desired stability robusues properties under a been reduced from n-I to i, and the filter proceeding 0, hast
deinrule as follows,. a reduced numerator and denominator degree. For the ap-

~gn _ _-.cial case of a relative degree one plant. iLe., for in - a-1,
Definition 3: For a given choice of the Parameter vector 1.a these differeces disappear, and the structure is wcdy that
design rule as robustly stabilizing if and only if of [3].

(I) the system is stable when EU - Figure 3 is a post-adaptation representation of the strc-
Mre That is, it is a valid representation when the adjustable

i0 ' Ps 11's < gains am held constant. This is appropriat for ou md
system analysis. In Figure 3. C(s). D(s), c. are polynomials

Definition 4: For a given IPU, the design rule is of degree n--2, x-I, 0 respectively.
Potentially robustb? stabilizing if. given FgS, there exists a the
parameter vector I such that the design rule is robustly stabil- 711
izing.

The following lemma indicates how a design rule can be
proven to fail regardless of the choice of the paramete vector
L

Lanm 1: For a design rule to be
potentilly rob=s*l stabilizing it is necessary (but not
sufficient) that 1

114 %'~cj) w <Iy a Figure 21 IC- PSG PS 4An MRAC Structure

01Figure I Figure 3
A Generic Feedback System A Tuned MRAC Structure Representation



B. The Design Rule Us) M - s D~)(3
Since we explicitly allow for perturbations in our Dps)A I(s)

analysis, we may define the ideal system by assuming Note that further simplification occurs in the case of
Eu - 0 and A, - 1. We shall define the tuned system under relative degreee 1 nominal plants, since then A 1  .
these assumptions, and later include Eu and A1 as perturba-
tions in the analysis of the system (Note: in the case of IV. EVALUATION OF THE MRAC STRUCTURE
relative degree 1 nominal plant descuiptions, A, is identically
1, and only Eu is neglected.) A. Conditions for Robust Stability

Under the assumptions EU - 0 and Al - 1, the MRAC
design rule enforces a model-matching criterion given by 1. Robustness Under Global Uncertainty

CkpVps)I4(s) kWVh(s) In [3) a design rule similar the one studied heme
Dps(ms+Cs)V~)Ds = s (4) (ectly the samne when n-m--l) was proven to be globally

Dp~s)Nj1 ($C~s)-kpI~s)~s) M~s)stable. That *s the closed loop system was stable for any
The design rule f, is defined implicitly by this equation. value of the coefficients of NA:s) and Dps). subject to a

minimumn phase requirement on Np. Talring this same struc-
C. Algebraic Impicatioas of the Design Rule tured uncertainty as Ps in our analysis, we find that the

It can be proven (e.g. in 14] ) that the model-matching robustness margins with this design rule are extremely small
criterion uniquely define c., C(s) and D(s) in terms of the
plant and model parameters Unforunately, the relationship Theorem '1: Under global structured uncetainty, if the
of c,, C, and D to the plant and model is not very tran- unistructured uncertainty bound Eu(JW) is strictly greater than
aparent. in order to perform a study of the implications of (Al(jO) - I) for any ca, the MRAC design rule is not posen-
die design rule on performance and robustness, some 4aniy robwsty stabilizing-
simplifications at required. This section describes the alge- Proof: Examination of (12) reveals that as one allows
braic manipulations which accomplish this simplification, the magnitude of Dps) approach infinity, keeping other

First, note that th~e numerator and denominator of the coefficients fixed, rr(o)I-* I1 Tu
left-hand-sidie of (4) have degree greater than the numerao Al(Jim) -1I
and denominator of the right hand side. It follows that m SIP
pole-zero cancellations occur. Equating the numnerators ( r5OT c,1)EuQO)} 1 j)-
reveals that the cancellations involve the roots of Np. One
finds that the design rule is equivalent to the following rules: Since this is true for each 1,

cekp - km(5) $W ( {T(c~ljico)EQ01 I ~ k
Dp(sXNj~s) + C(s)) - kjr~p(s)D (s) - Np(s)D51 (s) (6) iLP~ r(W1iA,,)JEJ)D

Equation (6) is a polynomial equality valid for all s. ema 1 com~pletes the proof. a
One can simplify the equations by examining interesting Since A, is approximately 1 over the frequency range of
choices of s. In particular, let si be a zero of NA:s). Then interest in- tie control problem, the stability margin is smalL
equation (6) becomes Moreover,: we have as a corollary that the margin is zero in

Dp~sj)(Nu(sa) + CQs1) - 0 (7) the case of relative degree one plants:

Since Np and Dp ae coprime, Dpsd is not zero, hence Corollary- For relative degree one plants, the MRAC design

NW-0a +4 C(s1) - 0() rule is not potentially robustly stabilizing une global struc-
tured uncertainty unless the unstructured dynamics are

Since this is true for all mt zeros of Np, and since NM + C has assumed to be exactly zero.
exactly M zeros,

NM(s) + C(s) - NA:s) (9) 2. Robustness Under Bounded Uncertainty

Substituting (9) into (6) and dividing by Np one obtains Even when the structured uncertainty is not global, there
kpD(s) - Dps) - Du(s) (10) may be no choice of the reference model which results in

robust stability.
Examination of Figure 3 in light of equations (9) and Consider the case of a zrltive-degree-one plant with

(10) reveals the sensitivity, complementary sensitivity, and deoinator uncertainty including a known one, as given by
loop trartsfer functions: (2).

S($)- DpA:)A 1 (s) - 1) Theorem 2: Under these conditions, a necesrsary conditionDpsXAI(s) - 1) + D,4 (s) for posential robust stability is:
Dps) - DM(s)(1)1fral0weeK0M>I

T(s) "- A)(A() - 1) + DM(s)(1)(joEj)cIfoal weeE(o>I



Proof: Regardless of Dw, exremizing equation (12) subject B. Conditions for Desensitivity
So ES(jW < s yields

1{ i. ) P07D.4 + &P - 1. Desensitivity Under Global Uncertainty

1 4 J - -D u Theorem 4: If the sensitivity specification IEp(o)J is stictly
IDpo-D0 + &Ppo W greater than (At(jco) - 1)A1(jw) for any (No then for any

+choice of the model, the system is not demeltzing ud
global u r ty.

Now, by the methods of calculus one can infemnize this last
quantity over all D(jl0) with the esult that at the infemum, Proof: Using the sensitivity expression (11). the definition of
the inequality becomes an equality, and one has deseitivity becomes

uuco) if sup1 ! Dp2OACO <1 D'fup~~~~ ~ ~ ~ DdiC)J.; D ,L6 (ftXA1 (j(c) +mjc)A J-
P4. S ~I )~o~ ~ $)(O if &<1 _I

The theorvm follows by letting pDI approach infinity. D

which is logically equivalent to the theorem. 0 Corollary: For relative degree one plants, no design is desen-

This theorem implies that for some combinations of sitizing when Epjco) > 0 for any w.
structured and unstucturd uncertainty oe cannot guarantee
stability by choice of the model Furthermore, a minima 2. Desensitivity Under Bounded Uncertainty
requirement for stability guarantee, oneTheem 5: For die cas of a relative degree one plant and a
structured plant denominator well a priori in those frequency conic b o t rctse d demh i o n era inty te
ranges where large robustness margins are desired. MRAC design rle is always poenially desenzing, pro-

The theorem only provides a necessary condition for vided that (l+Es(jd))Ep(j) < 1 for sufficiently large Co.
two reasons. First, an optimization was performed pointwise ( is a very reasonable requirinenL) Moreover, a
at each frequency to determine (or at least limit) Dm(im). uqffcient condition for a given model choice to be desensitiz-
However there is no guarantee that there exists a Hurwitz ing is
polynomial of degree n which has exactly this frequency IDp00c)l
reponse.- Since the only allowable choices for DM in th i Dp( 0O + 1Sj)EPi) < ' I VC
MRAC structure we Hurwitz and degree n, there is perhaps I + I
no model which provides robust stability even when Theorem Proof: Applying the sensitivity expression (11) and the conic
2 is satisfied. Second, the lower bound in (2) need no bound on Dp to the definition of desensitivity, oe finds
represent the complete fmily of posibl plants. desensitivity is implied by

Somewhat songer conditions are actually sufficient for _ ri DpI _
robust stability. " '- I-II1l E <1 S

Theorem 3: For a relative degree one plant and a conic Te fact that the structure is always potentially deseni-
bounded structured uncertainty ball Dp - Dpo(I + Es), a tizing, Le., that there always exists some model sadtisfying the
sufficient condition for patnuial robor sabitiy is: condition of the theorem, follows by simply leting JD

Dp9(s) is Hurwitz, and approach ea. 0
KjW) c) < I V toJTV. COMBINED PERFORMANCE AND ROBUSTNESS

Proof: Choosing DM - Dpo and applying equation (12) While p sections have examined questions of
yields desensitivity and stability robustness, in practice one is not

. W  satisfied with a controller that has only one of these proper-
. PSG r ties - it must have both.

The theorem then follows from the definition of robust stabil- In this section, we describe a general analysis technique
ity. a for tuned adaptive systems. The technique is appropriate for

It is worth noting the sacrifice that was made in achiev- addressing the separate questions of stability robustness and
ing robust stability in this theonm A consequence of choos- desensitivity, as well as the more advanced question of robust
ing the model poles to be the a priori nominal plant poles is performance. Robust performance implies not only a guaran-
poor sensitivity. For example, when the plant happens to be tee of stability under all structured and unstructured un=e-
exactly the a priori estimate, the sensitivity is one at all fre- tainty, but also a guarantee of a certain level of desensitivity
quencies (equation (11) with A, - 1, Dp - DM - Dp. Such under the entireset of uncertainty.
issues motivate the study of simultaneous performance and The theoretical foundation both for the definition of
robustness through a single model choice, which is treated robust performance and its evaluation, is the structured singu-
later. lhr value theory ( [11 ,12]).



A. The Design Specification Evaluation of the Design Measure is aided by existing

The question of whether a de.ensitivity specificaion is structured singular value analysis software. Currently, the

satisfied under system uncertainty may be transormed into a software can efficiently evaluate the stability of the general

robust stability analysis problem ( (1] ). The technique system of Figure 5, where M(s) is a known transfer function,

involves introducing an additional unstructured uncertainy and the ,:O-W are both analytic and bounded by one in the

Ep(s) into the system, with the input to Ep being el of Figure right half plane, but otherwise unknown. For perturbations of

1, and the output being the yp node of Figure 1. One assumes size other than one, the unceranti$ may be factored into a
that the perturbaion Ep is stable but unknown except for the unity-bounded parts and known scaling factors. The scaling
hotd tE ) < pprb ) a to Hem is s e but un edesensitivity factors may then be absorbed into the system M(s). Such

specification which appears in definition 1. If the system is opertion am routine in multivariable ontrl

robustly stable under all u ainties including this added The output of the software is a real number p for each

(fictitious) uncertainty, then the actual system satisfies the frequency w, equal to the reciprocal of the largest factor by
desensitivity spec (definition 1) under the entire set of actual which all the As' can be scaled before

uncerta nty ( [] ). detU - diag(AXj))W(jco)] vanishes. Thus, if the maximum

br the special case of the suure at hand, one may of t over all frequencies is less that unity, the system
use the algebraic results of section MI to manipulate the tuned remains stable, while if the maximum exceeds unity, it will

system representation, obtaining the equivalent representation be unstable fo some value of the '. It follows that ll pro-

of Figure 4. In Figure 4, the added uncertainty block Ep has vides a direct evaluation of our Design Measur, provided

been included as described above. In addition, we have only that the three uncertainty blocks in Figure 4 are unstruc-

defined the stuctured uncertainty ES in the figure implicitly tured.

by Dp($) - Dp0(sXl + ES<s)), as desribed previously. Of course, ES is not unstructured. Nevertheless, the
structured singular value analysis may still be applied to theOne speciis the control system objectives by specify- tunei Mvi C through~ a two-step procedue.

ing the size of the uncertainties, and the desired performance

unde" these Uncertainties. First, the cone covering {ES(c)) (radius - ES) is used.
The structured singular value analysis then determines if the

Definition 5: The Design Specifwadon is formed by the sets system of Figure 4 is stable with this cone of uncertainty. If
describing E$, EU, and E£, with the interpretation that one so, it is also stable with the smaller set {E$), which implies
requires the desensitivity indicated by Ep be guaranteed that the Design Specification is met. Ltig Ir represent the
under the uncertainty indicated by ES and Eu. output of this structured singular value analysis, p: is an

Defint 6: The Design feasure is the inverse of the upper bound on the Design Mesur.

est factor by which all of the uncertainty sets in Figure 4 can Second, a cone within {E3(J6o)} (radius - &) is used. It
be scaled while retaining a guarantee of stability of the sys- is ial requiremen tha this smare uncertainty be
on of Figure 4. tolerable. Performing a structured singular value analysis and

By the above discussion, "Design Measure S I" indi- denoting the output i, supL is a lower bound on the Design
cates that the Design Specification is met. "Design Measure Measure. Clearly, the Design Specification is violated if LL is
> 1" indicates that the Design Specification is not met. greater than one at any frequency.

B. Structured Singular Value Analysis

Structured singular value analysis was originally
developed for the evaluation of multivariable control system
robusness. As we shall show in examples to follow, the
structured singular value has importame in analysis of tuned

Figure 4 Figure 5
An Alternate Tuned MRAC Representation The Structured Singular Value Problem Setting



C. Examples It is worth noting that this analysis is an entirely a
priori analysis of the full set of possible post-adaptation sys-

1. A Solvable MARAC Design Problem temns.

Consdera noirW plan wih dereeDp) 2,andOne may perform this a priori analysis for a variety of
Coder - n1m, a plhueanti degre) of 1 , antth design It is reasonable to assume that the desensitivity

dere(W. -1,adths areaiv dgeeof2 requirements as well as tie size of the structured and unstruc-
model denominator be DM - + 201 + 100. Since the plant tuiret uncertainty sets are fixed feature of a design taskL The
and model numerator do not enter into our analysis, We nee design parameter which may be chosen is the refernce
only assu~me that both have roots in the open left half plazie. model, through which the tuned controller is implicitly
Let an a priori estimnate of the plant denominator be designIed.

Do- j2+ 8: + 16 with the a priori evzor bound:-i eaaeprfrac n outns rprisss
Dp(s-Dpr,(s) . 81z + h~ where 1005f + 61 S 400. (14) died in section IV. as well as the requirement that the model

Defining ES implicitly by Dp(s) - DpO(sX1 + E5 (s)) yields he stable, provide limits on the choice of models that need he
ES.(s) - (81s + &,Y(s2 + & + 16). Then for each co, the set cosidered. Within these limits, a mcel choice may or may
of structurod uncertainty {E(jw)} implied by equation (14) is amstif th mor challeng~ing and morm important goal of
an ellipse with inajo (mior respcivey) r~am~ robust performance unde the full set of uncertainty. For
ESUMv) (W1 jc)) -each choice of the model, one may use the structured singu-

lar value analysis to classify die design as either (1) satisfy-
2 I 20 Iing the design specification, (2) violating the designmax (min, rep.)iti I

1 2+g+1, 32 +s+ 16 tpecifiatio, or (3) indeterminate through the structurzed

HereR~ n~S serve as radii for a conic cover and a conic
subset, as described in section IL Thus one can describe an Keeping all but the model choice the same as above, a
inscribed cone and a conic bound by classification of the design has beeni performed for a grid of

possible model choices, with the results shown in Figure 7.
As the Design Specification, let the size of the unstruC- The figure illustrates the fact that standard tuned model refer-

tured dynamics to be tolerated, and the desired desensitivity once systems can satisfy control objectives in some problem
be given by: settings, provided, that the model Is carefully chosen.

EV~(S) - A2(.r)W 1V(S) Wt,(:) - 5s .i20
s + 200 2. An Unsolvable MAC Design Problem

EpAs) - AO~) WeS). WAS) - 0.f + 5) With precly the same performance objec and the
J+1 ameset of unstructured uncertainty as in the previous exam-

Uigthe coi cover Es an efrigasrcue pie, die design task becomes intractable when the a priori
Using valu anlss eoti nper un nh uncertainty becomes too large. Let the size of {Es(jco))

Dsina veaue, ahnalyi wie btainc n uDesoudgn Uku become large by a factor of 10. This corresponds to the a

ure is less than one everywhere, the NERAC controller pir nomto 08
designed for the specified DM will satisfy the Design I05 +5 61S40000. (15)
Specification (if it converges). Repeating the procedure of the first example, but using the

inscribed uncerainty conec in the structured singula value
analysis to obtain a lower bound on the design margin, one
obtains the result shown in Figure 8. Since LL > 1 at some
hqutenciest the design does not satisfy the Design
Specification.

Exploration of alternate model choice indicates that one
cannot meet the Design Specification thrugh choice of the

1 design Parameter. The corresponding figure to Figure 7I would show all designs to be classified as violating the spec
This example illustrates that die sandard model refer-

J cam adaptive control structure: cannot solve certain practical
control design ts, even under the greatly simplifying
assumption that successful identiiainaatto does take

_________ ________ _________ place

f requmlay (radianweseeid)

Figure 6
An Upper Bound on the Design Measure

For a Successful Design



V. CONCLUSIONS. References

When~~~~~~~ one tae nocnieaio h sa efr 1. J. C. Doyle, J. E. Wall, and 0. Stein, "Performance and
mance and robustness requirements of a control system, a Robustness Analysis for Structured Uncertainty,"
model reference adaptive cotro prbe ma eWpsdi Proceedings of the 20th Conference on Decision and
the sense that the aUne system indicated by the model Cnrl eebr 92
matching design rule may not be acceptable. However, Cnrl eebr 92
trugh the analysis framework of this paper, one can deter- 2. J. C. Doyle, -Structured Uncertainty in Control System
mine whether a design rule will lead to an acceptable system. Design," Proceedings of the 24th Conference on Deci-
assuming convergence is achieved. Only is such cases need sin and Control, Ft. LAuderdale, Florida, Decmber.
one be concerned with the (formidable) question of robust 1986.
identifiation. 3. K. S. Narendra, Y. H. Liii and L S. Valavani,, "Stable

Adaptive Controller Design, Part M, Proof of Stabil-
ity," IEEE Transactions on Autonsatc Control, vol.
Vol. AC-25, Junie 1980.

4. S. S. Sastry, "Model-Reference Adaptive Control - Sta-
bility, Parameter Convergence, and Robustness," IMA
Journal of Mathematical Control and Information, pp.
27-66, 1984.

dM Wn 0 5 0 5 0 5 5 0 5 5. G. Za s " *Feedbck and Optimal Sensitivity: Model
d W2 10Reference Transformations, Multiplicative Seminorms,

2 and Approximate laverms," IEEE Transsactions on
Automeatic Control, vol. AC-26, pp. 301.320, April,

40 1981.

0M~s*dM sN2 60

90

Satifies 9n

Performance 10
Specification 1

10
indetermnt 17

1~10-

indtemiat I

2rqecWrdin/eod

Figre

Fiur L7e Bon2o heDsinMesr

350 Deorn anUsucssu0Dsg


